Large Language Models

Scaling Laws

ELL881 · AIL821

Sourish Dasgupta Assistant Professor, DA-IICT, Gandhinagar *https://daiict.ac.in/faculty/sourish-dasgupta*

"Emergent" abilities in LLM

LLMs are few-shot learners (*and <u>larger</u> is better!*)

LLMs are few-shot learners (*and larger is better!*)

LLMs are few-shot learners (*and larger is better!*)

LLMs are few-shot learners (*more training is better too!*)

Google BIG-BENCH benchmark

Consider a single Model Family e.g. PaLM

Let x_n be the scale of one family member e.g. PaLM-540B

Let y_n be the family member's score on some <u>Task</u> and <u>Metric</u> Sort the pairs (x_n, y_n) by model scale x_n , smallest to largest

Emergence Score
$$\left(\left\{(x_n, y_n)\right\}_{n=1}^N\right) \stackrel{\text{def}}{=} \frac{\operatorname{sign}(\operatorname{arg}\max_i y_i - \operatorname{arg}\min_i y_i)(\max_i y_i - \min_i y_i)}{\sqrt{\operatorname{Median}(\{(y_i - y_{i-1})^2\}_i)}}$$

LLMs "seems" to get more intelligent with the following:

Recap on Parameter size & FLOPs

Operation	Parameters	FLOPs per Token
Embed	$(n_{ m vocab} + n_{ m ctx}) d_{ m model}$	$4d_{ m model}$
Attention: QKV	$n_{ m layer}d_{ m model}3d_{ m attn}$	$2n_{ m layer}d_{ m model}3d_{ m attn}$
Attention: Mask	—	$2n_{ m layer}n_{ m ctx}d_{ m attn}$
Attention: Project	$n_{ m layer}d_{ m attn}d_{ m model}$	$2n_{ m layer}d_{ m attn}d_{ m embd}$
Feedforward	$n_{ m layer} 2 d_{ m model} d_{ m ff}$	$2n_{ m layer}2d_{ m model}d_{ m ff}$
De-embed		$2d_{ m model}n_{ m vocab}$
Total (Non-Embedding)	$N = 2d_{\text{model}}n_{\text{layer}} \left(2d_{\text{attn}} + d_{\text{ff}}\right)$	$C_{\rm forward} = 2N + 2n_{\rm layer} n_{\rm ctx} d_{\rm attn}$

one PF-day = $10^{15} \times 24 \times 3600 = 8.64 \times 10^{19}$ floating point operations.

Emergent abilities are *unpredictable*

If that's true, we never get to know the following:

- <u>Which</u> abilities (and <u>when</u>) exactly will emerge?
- <u>What</u> controls the trigger?
- Can we make <u>desirable abilities</u> to emerge *faster*?
- Can we make <u>undesirable abilities</u> to be <u>suppressed</u>?

Is the value of scaling laws only in predicting?

- How much *return* for a given compute (resource) budget?
- How to <u>allocate</u> the compute budget model size vs. dataset size?

Can there be a curve that fits "emergence"? Intuition

Input:
$$x_1 \dots x_n \sim N(\mu, \sigma^2)$$

Task: estimate the average as $\hat{\mu} = \frac{\sum_i x_i}{n}$

What's the error? By standard arguments..

$$\mathbb{E}[(\hat{\mu} - \mu)^2] = \frac{\sigma^2}{n}$$

This is a scaling law!! $log(Error) = -log n + 2 log \sigma$

More generally, any polynomial rate $1/n^{\alpha}$ is a scaling law

What about fitting "emergence" in *non-parametric* setting

Neural nets can approximate arbitrary functions. Lets turn that into an example.

Input: $x_1 \dots x_n$ uniform in 2D unit box. $y_i = f(x_i) + N(0,1)$ **Task:** estimate f(x) **Approach**: cut up the 2D space into boxes with length $n^{-\frac{1}{4}}$, average in each box

What's our estimation error?

Informally, we have
$$\sqrt{n}$$
 boxes, each box gets \sqrt{n} samples.
 $Error \approx \frac{1}{\sqrt{n}} + (other \ smoothness \ terms)$

In *d*-dimensions, this becomes $Error = n^{-1/d}$ - **This means scaling is** $y = -\frac{1}{d}x + C$ **Takeaway:** flexible 'nonparametric' learning has dimension dependent scaling laws.

Source: CS-324, Stanford University

Notations

 $C \approx 6N$ floating point operators per training token.

C = 6NBS estimates the (non-embedding) compute used at batch size B

S is the number of training steps (ie parameter updates)

 S_{\min} – an estimate of the minimal number of training steps needed to reach a given value of the loss. This is also the number of training steps that would be used if the model were trained at a batch size much greater than the critical batch size.

one PF-day = $10^{15} \times 24 \times 3600 = 8.64 \times 10^{19}$ floating point operations.

 $B_{\rm crit}$ – the critical batch size [MKAT18], defined and discussed in Section 5.1. Training at the critical batch size provides a roughly optimal compromise between time and compute efficiency.

 C_{\min} – an estimate of the minimum amount of non-embedding compute to reach a given value of the loss. This is the training compute that would be used if the model were trained at a batch size much less than the critical batch size.

What if the loss-drop (i.e., emergence) follows power-law?

2020 Arxiv (cs); JOHNS HOPKINS

(G) OpenAl

2020 Arxiv (cs);						
A more reliable version:		L	$(C) \approx$	$\left(\frac{C_c}{C}\right)^{\alpha_C}$		
$I(Q) = (Qmin / Q) \alpha_C^{min}$		Parameters	Data	Compute	Batch Size	
$L(C_{\min}) = (C_{c}^{\min}/C_{\min})$	Optimal	∞	C	Fixed		
$lpha_C^{ m min} \sim 0.050, C_{ m c}^{ m min} \sim 3.1 imes 10^8 \ ({ m PF-days})$				VS.		
$C_{\min}(C) \equiv \frac{C}{1 + B/B_{crit}(L)}$ (minimum compute, at $B \ll B_{crit}$) N_{opt} D_{opt} C_{\min} D_{opt}					$B \ll B_{\rm crit}$	
$B_{ m crit}(L) \approx \frac{B_*}{L^{1/\alpha_B}}$	Compute-H	Efficient Value		Power Law	Scale	
$L^{-\gamma} = D$	$N_{\rm opt} = N_e$	$\cdot C_{\min}^{p_N}$	/	$p_N = 0.73$	$N_e = 1.3 \cdot 10^9$	⁹ params
$B_* \sim 2 \cdot 10^\circ$ tokens, $\alpha_B \sim 0.21$	$B \ll B_{\text{crit}} = \frac{B_*}{L^{1/\alpha_B}} = B_e C_{\min}^{p_B}$		$\gamma_{\min}^{p_B}$	$p_B = 0.24$	$B_e = 2.0 \cdot 10^6$	ⁱ tokens

<u>Kaplan Laws</u>

We are in luck! Turns out that scale *is* predictable

(S) OpenAl

IOHNS HOPKINS

Observation 1a: Universality of Overfitting

(G) OpenAl

OHNS HOPKINS

Observation 1b: Sample Efficiency

(G) OpenAl

OHNS HOPKINS

Key takeaway 1: Both parameter and dataset to be scaled

 $L(N) \approx$

(G) OpenAl

Both needs to be scaled together

2020 Arxiv (cs);

 $L(N,D) = \left| \left(\frac{N_c}{N} \right)^{\frac{\alpha_N}{\alpha_D}} + \frac{D_c}{D} \right|^c$

 α_N

 $\frac{N_c}{N}$

 $\frac{D_c}{D}$

 $L(D) \approx$

Observation 2: What about training time (steps & FLOPs)?

2020 Arxiv (cs);

(S) OpenAl

OHNS HOPKINS

Key takeaway 2: Universality of training

$$L(N,S) = \left(\frac{N_c}{N}\right)^{\alpha_N} + \left(\frac{S_c}{S_{\min}(S)}\right)^{\alpha_S}$$

2020 Arxiv (cs);

$$L(N,D) = \left[\left(\frac{N_c}{N}\right)^{\frac{\alpha_N}{\alpha_D}} + \frac{D_c}{D} \right]^{\alpha_D}$$

 $S_c \approx 2.1 \times 10^3$ and $\alpha_S \approx 0.76$, and $S_{\min}(S)$ is the minimum possible number of optimization steps

$$\begin{split} S_{\min}(S) &\equiv \frac{S}{1 + B_{\mathrm{crit}}(L)/B} \qquad (\text{minimum steps, at } B \gg B_{\mathrm{crit}}) \\ B_{\mathrm{crit}}(L) &\approx \frac{B_*}{L^{1/\alpha_B}} \end{split}$$

(S) OpenAl

 $B_* \sim 2 \cdot 10^8$ tokens, $\alpha_B \sim 0.21$

Parameter	α_N	α_D	N_c	D_c
Value	0.076	0.103	6.4×10^{13}	1.8×10^{13}

Parameter	α_N	$lpha_S$	N_c	S_c
Value	0.077	0.76	6.5×10^{13}	2.1×10^3

Are we only to worry about

???

LLMs: Scaling Laws

Key Takeaway 3: Model shape does not matter!

(G) OpenAl

IOHNS HOPKINS

Key Takeaway 4: Embedding matrix does not matter!

2020 Arxiv (cs);

(G) OpenAl

OHNS HOPKINS

Key Takeaway 5: Dataset *composition* does not matter!

T

JOHNS HOPKIN

(G) OpenAl

Kaplan Scaling Laws at a glance:

🕼 OpenAl

					Power Law	Scale (tokenization-dependent)
					$\alpha_N = 0.076$	$N_{\rm c} = 8.8 \times 10^{13}$ params (non-embed)
					$\alpha_D = 0.095$	$D_{\rm c} = 5.4 \times 10^{13}$ tokens
					$\alpha_C = 0.057$	$C_{\rm c} = 1.6 imes 10^7$ PF-days
Parameters	Data	Compute	Batch Size	Equation	$lpha_C^{\min} = 0.050$	$C_{\rm c}^{\rm min}=3.1\times 10^8~{\rm PF}\text{-}{\rm days}$
N	00		Fixed	$L(N) = (N_c/N)^{\alpha_N}$	$\alpha_B = 0.21$	$B_* = 2.1 \times 10^8$ tokens
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	D	Early Stop	Fixed	$L(D) = (D_c/D)^{\alpha_D}$	$\alpha_S = 0.76$	$S_{\rm c}=2.1\times 10^3~{\rm steps}$
Optimal	$\infty$	C	Fixed	$L(C) = (C_c/C)^{\alpha_C}  (naive$	e)	
Nopt	$D_{\rm opt}$	$C_{\min}$	$B \ll B_{\rm crit}$	$L(C_{\min}) = (C_c^{\min}/C_{\min})$	$\alpha_C^{\min}$	
Ν	D	Early Stop	Fixed	$L(N,D) = \left[ \left( \frac{N_c}{N} \right)^{\frac{\alpha_N}{\alpha_D}} + \right]$	$\frac{D_c}{D}$	
Ν	$\infty$	S steps	В	$L(N,S) = \left(\frac{N_c}{N}\right)^{\alpha_N} + \left(\frac{1}{2}\right)^{\alpha_N} + \left(\frac{1}{2}\right)^{$	$\left(\frac{S_c}{S_{\min}(S,B)}\right)^{\alpha_S}$	J



JOHNS HOPKINS





# Is there any other alternative law?







#### Turns out there is!

$$Loss(N_T, D) = \frac{N_c}{N_T^{\alpha}} + \frac{D_c}{D^{\beta}} + E,$$
$$Loss(N_T, C_T) = \frac{N_c}{N_T^{\alpha}} + \frac{D_c}{(C_T/6N_T)^{\beta}} + E$$

#### Chinchilla (Hoffman) Scaling Law









#### The Chinchilla (Hoffman) Scaling Law

$$\text{Loss}(N_T, D) = \frac{N_c}{N_T^{\alpha}} + \frac{D_c}{D^{\beta}} + E \longrightarrow L(N, D) = 1.69 + \frac{406.4}{N^{0.34}} + \frac{410.7}{D^{0.28}}$$

$$N_{opt}(C) = G(C/6)^{a} \quad D_{opt}(C) = G^{-1}(C/6)^{b}$$
  
where  $G = \left(\frac{\alpha A}{\beta B}\right)^{\frac{1}{\alpha+\beta}} \quad a = \frac{\beta}{\alpha+\beta} \quad b = \frac{\alpha}{\alpha+\beta}$ 

Fitting the constants, yields:  $\alpha \approx \beta$ i.e. equal scaling of **N** and **D**.









#### Chinchilla Scaling Law vs. Kaplan Scaling Law

$$\begin{split} \text{Kaplan:} N^*_{\backslash E} \propto C^{0.73}_{\backslash E} \\ \text{Chinchilla:} N^*_T \propto C^{0.50}_T. \end{split}$$

Performance penalty is N^{0.75} / D • if model increases 8x, dataset must increase 5x VS. Fitting the constants, yields:  $\alpha \approx \beta$ i.e. equal scaling of N and D.

$$egin{aligned} N_T &= N_E + N_{ackslash E}, & C_T &= 6 N_T D &= 6 (N_E + N_{ackslash E}) D, \ N_E &= (h+v) d, & C_{ackslash E} &= 6 N_{ackslash E} D. \end{aligned}$$







### The (revised) Chinchilla Scaling Law



# Is it a problem with our point-of-*view*?









# LLMs "seems" to get more intelligent with the following:











#### Motivation: Not all metrics score same (Emergence Score)











# Is your accuracy metric non-linear or discontinuous?



38

#### > 92% of BIG-BENCH:





## Power Law in play!





1.0





## Problem with Non-linear Measure: Eg.: Exact string match

**Task**: Add k-digit integers 1 1.0 Target Str Len - Published Emergent Ability 8.0 **—** 5 \$ 0.6 0.8 UNDON 0.4 0.2 9.0 4 7 0.0 107 1010 1011 Model Parameters 0.2 0.0 1010 1011 109 Model Parameters

if all K+1 digits in model's output are correct

0 otherwise

$$\hat{p}_{v^*}(N) = \exp\left(-(N/c)^{\alpha}\right)$$

 $Accuracy(N) \approx p_N(single token correct)^{num. of tokens}$ 









# Change of perspective: Measure: Edit distance

Task: Add k-digit integers



1 if all K+1 digits in model's output are correct

0 otherwise

$$\hat{p}_{v^*}(N) = \exp\left(-(N/c)^{\alpha}\right)$$

Edit Distance(N)  $\approx L \left( 1 - p_N(\text{single token correct}) \right)$ 









# Problem with **Discontinuous** Measure: Eg.: <u>MCG</u>

Task: Choose one of two



- I if highest probability mass on correct option
- **0** otherwise

$$\hat{p}_{v^*}(N) = \exp\left(-(N/c)^{\alpha}\right)$$









# Change of perspective: Measure: Brier Score

Task: Choose one of two



1 if all K+1 digits in model's output are correct

0 otherwise

$$\hat{p}_{v^*}(N) = \exp\left(-(N/c)^{\alpha}\right)$$

Brier Score = (1 – probability mass on correct option)²









#### Prediction: Power Law vs. Near-Linear counterpart











### Results on GPT3.5/3: Task: 2-digit integer multiplication











### Does the claim work for Google BIG-BENCH benchmark?











# Key Takeaways

- Want to predict without the theatrics? Choose a <u>metric that's "soft"</u> (in the continuous sense)
- There's <u>no sudden jump</u> in reality ("most" can be predicted on a near-linear scale)
- Do we really need the power law of scale? Maybe not!





